These papers are provided solely for educational purposes, to ensure timely dissemination of academic work for noncommercial individual use. Copyright and all rights therein reside with the papers’ respective copyright holders.
(ºpostdoc, *graduate student, **undergraduate student)
*Yu, Y. & vanMarle, K. (2022). Enumeration takes time: Accuracy improves even after stimuli disappear. Cognition. https://doi.org/10.1016/j.cognition.2022.105147
vanMarle, K. (2021). Foundational Considerations: Does Primitive Number Sense Provide a Foothold for Learning Formal Mathematics? In Olivier Houdé and Grégoire Borst (Eds.) Cambridge Handbook of Cognitive Development. Cambridge: Cambridge University Press.
ºChu, F. W., vanMarle, K., Hoard, M. K., Nugent, L., *Scofield, J. E., & Geary, D. C. (2019). Preschool deficits in cardinal knowledge and executive function contribute to longer-term mathematical learning disability. Journal of Experimental Child Psychology, 188. https://doi.org/10.1016/j.jecp.2019.104668
Geary, D. C., vanMarle, K., ºChu, F. W., Hoard, M. K., & Nugent, L. (2019). Predicting age of becoming a cardinal principle knower. Journal of Educational Psychology, 111(2), 256-267. http://dx.doi.org/10.1037/edu0000277
vanMarle, K. (2018). What happens when children learn to count? The development of the number concept. In Sorin Bangu (Ed.) Naturalizing Logico-Mathematical Knowledge: Perspectives from Philosophy, Psychology, and Cognitive Science; (pp.131-147). New York: Routledge.
Geary, D. C., & vanMarle, K. (2018). Growth of symbolic number knowledge accelerates after children understand cardinality. Cognition, 177, 69-78. https://doi.org/10.1016/j.cognition.2018.04.002
ºChu, F. W., vanMarle, K., Rouder, J., & Geary, D. C. (2018). Children’s early understanding of number predicts their later problem-solving sophistication in addition. Journal of Experimental Child Psychology, 169, 73-92. https://doi.org/10.1016/j.jecp.2017.12.010
Geary, D. C., vanMarle, K., ºChu, F. W., Rouder, J., Hoard, M. K., & Nugent, L. (2018). Early conceptual understanding of cardinality predicts superior school-entry number system knowledge. Psychological Science, 29(2), 191-205. https://doi.org/10.1177/0956797617729817
vanMarle, K., *Chu, F. W., *Mou, Y., *Seok, J. H., Rouder, J., & Geary, D. C. (2018). Attaching meaning to the number words: Contributions of the object tracking and approximate number systems. Developmental Science, 21(1), e12495. https://doi.org/10.1111/desc.12495
vanMarle, K. (2017). Controlling for continuous variables is not futile: What we can learn about number representation despite imperfect control. Behavioral and Brain Sciences, 40, E193. https://doi.org/10.1017/S0140525X16002296
vanMarle, K., & Wynn, K. (2017). Number processing and arithmetic. In Reference Module in Neuroscience and Biobehavioral Psychology, Elsevier. http://dx.doi.org/10.1016/B978-0-12-809324-5.03131-X
Luo, Y., *Hennefield, L., *Mou, Y., vanMarle, K., & Markson, L. (2017). Infants’ understanding of preferences when agents make inconsistent choices. Infancy, 22(6), 843-856. https://DOI.org/10.1111/infa.12194
Geary, D. C., & vanMarle, K. (2016). Young children’s symbolic and non-symbolic quantitative knowledge: predictors of later mathematics achievement. Developmental Psychology, 52(12), 2130-2144. http://dx.doi.org/10.1037/dev0000214
ºMoore, A., vanMarle, K., & Geary, D. C. (2016). Kindergartners’ fluent processing of symbolic numerical magnitude is predicted by their cardinal knowledge and intuitive understanding of arithmetic 2 years earlier. Journal of Experimental Child Psychology, 150, 31-47. http://dx.doi.org/10.1016/j.jecp.2016.05.003
vanMarle, K., *Mou, Y., & *Seok, J. H. (2016). Analog magnitudes support large number ordinal judgments in infancy. Perception, 45(1-2), 32-43. https://doi.org/10.1177%2F0301006615602630
*Chu, F., vanMarle, K., & Geary, D. C. (2016). Predicting children’s reading and mathematics achievement from early quantitative knowledge and domain-general cognitive abilities. Frontiers in Psychology. https://doi.org/10.3389/fpsyg.2016.00775
*Chu, F., vanMarle, K., & Geary, D. C. (2015). Early numerical foundations of young children’s mathematical development. Journal of Experimental Child Psychology, 132, 205-212. https://doi.org/10.1016/j.jecp.2015.01.006
vanMarle, K. (2015). Foundations of the formal number concept: How preverbal mechanisms contribute to development of cardinal knowledge. In David C. Geary, Daniel B. Berch, & Kathy Mann-Koepke (Eds.), Mathematical Cognition and Learning: Evolutionary Origins and Early Development of Number Processing, (Vol. 1, pp. 175-199). New York: Elsevier. https://doi.org/10.1016/B978-0-12-420133-0.00007-7
vanMarle, K., *Chu, F. W., *Li, Y., & Geary, D. C. (2014). Acuity of the approximate number system and preschoolers’ quantitative development. Developmental Science, 17(4), 492-505. https://doi.org/10.1111/desc.12143
*Mou, Y., & vanMarle, K. (2014). Two core systems of numerical representation in infants. Developmental Review, 34(1), 1-25. https://doi.org/10.1016/j.dr.2013.11.001
*Chu, F. W., vanMarle, K., & Geary, D. C. (2013). Quantitative Deficits of Preschool Children at Risk for Mathematical Learning Disability. Frontiers in Developmental Psychology. https://doi.org/10.3389/fpsyg.2013.00195
vanMarle, K.(2013). Infants use different mechanisms to make small and large number ordinal judgments. Journal of Experimental Child Psychology, 114(1), 102-110. https://doi.org/10.1016/j.jecp.2012.04.007
Hespos, S. J., & vanMarle, K. (2012). Everyday Physics: How infants learn about objects and entities in their environment. WIREs Cognitive Science, 3, 19-27. https://doi.org/10.1002/wcs.157
vanMarle, K., & Wynn, K. (2011). Tracking and quantifying objects and non-cohesive substances. Developmental Science, 14(3), 502-515. https://DOI.org/10.1111/j.1467-7687.2010.00998.x
Yamaguchi, M., Kuhlmeier, V. A., Wynn, K., & vanMarle, K. (2009). Continuity in social cognition from infancy to childhood. Developmental Science, 12(5), 746-752. https://DOI.org/10.1111/j.1467-7687.2008.00813.x
vanMarle, K., & Wynn, K. (2009). Infants' auditory enumeration: Evidence for analog magnitudes in the small number range. Cognition, 111, 302-316. https://doi.org/10.1016/j.cognition.2009.01.011
vanMarle, K., Aw, J., McCrink, K., & Santos, L. (2006). How capuchin monkeys (Cebus apella) quantify objects and substances. Journal of Comparative Psychology, 120(4), 416-426. https://psycnet.apa.org/doi/10.1037/0735-7036.120.4.416
vanMarle, K., & Wynn, K. (2006). 6-month-old infants use analog magnitudes to represent duration. Developmental Science, 9(5), F41-F49. https://psycnet.apa.org/doi/10.1111/j.1467-7687.2006.00508.x
vanMarle, K., & Scholl, B.J. (2003). Attentive tracking of objects vs. substances. Psychological Science, 14(5), 498-504. https://doi.org/10.1111%2F1467-9280.03451
vanMarle, K., & Wynn, K. (2002). Quantitative Reasoning. Encyclopedia of Cognitive Science. Nature Publishing Group: Macmillan Publishers Ltd., England.
Copyright © 2023 MU Developmental Cognition Lab - All Rights Reserved.
Powered by GoDaddy